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Abstract
We investigate theoretically the effects of a nanotube on the graphene nanoribbon Landau level
spectrum utilizing the tight-binding model. The addition of a nanotube changes the original
dispersionless Landau subbands into distorted parabolic ones, creates additional band-edge
states, and modifies the subband spacings. Moreover, the dispersion relations rely sensitively on
the nanotube location. The nanotube–ribbon couplings disrupt the Landau wavefunctions and
lift their spatial symmetry, which will change the selection rule of optical transitions. The
numbers, frequencies and heights of the density of states (DOS) peaks are found to be strongly
dependent on the magnetic flux density and the nanotube location. The evolution of the DOS
peak with the magnetic flux density is explored. The graphene nanoribbon Landau levels are
shown to be modified in an unexpected fashion by the nanotube–ribbon interactions. These
predictions can be validated by measuring the spectra of scanning tunneling experiments or
magneto-optical experiments, and they are most observable by placing the nanotube at the
electron wavefunction localization sites.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Graphene is a flat monolayer of carbon atoms arranged
in a two-dimensional (2D) honeycomb lattice. The
recent realization of stable few-layer, including single-layer,
graphenes has aroused considerable interest in the study
of their electronic properties [1–8]. There are reports of
unconventional electric field effects on the Hall coefficient [1],
and a novel quantum Hall effect in monolayer [7] and bilayer
graphenes [8]. These unusual electronic properties are due
to the linear dispersion relations near the Dirac point. The
carriers in graphene are massless Dirac fermions leading to
shifted Hall plateaus [3, 7]. When graphene is patterned
into a narrow ribbon, a graphene nanoribbon (GNR) will then
be obtained. Just like carbon nanotubes (CNs), graphene
nanoribbons are also 1D systems. They can be realized
either by cutting mechanically exfoliated graphenes [7], or by
patterning graphenes with lithographic techniques [2, 9]. In
zigzag nanoribbons, there are strongly localized states at the
zigzag edges, called ‘edge states’, which give rise to the partial
flat bands in the range of 2π/3

√
3b � k � π/

√
3b [10].

b = 1.42 Å is the C–C bond length. At k = π/
√

3b, the
electron wavefunction is perfectly localized at the zigzag edge.
When k deviates from π/

√
3b, the wavefunction gradually

penetrates and decays exponentially towards the inner sites.
On the other hand, carbon nanotubes are rolled-up graphene
sheets in cylindrical form, and their electronic properties are
crucially dependent on the diameters and chiralities [11, 12].
Only armchair nanotubes are metallic and have linear subbands
intersecting at the Fermi level. There are published reports
about the magnetoelectronic properties of nanotubes [13–15].

When a perpendicular magnetic field is applied to a 2D
graphene, it will confine the electron motion and leads to the
Landau levels [16], which follow a simple relation |Enh | =
(h̄vF/ lB)

√
2nh , where vF is the Fermi velocity and lB =√

h̄/eB is the magnetic length. A typical value is lB ≈ 51.3 Å
for B = 25 T. The index h = c or v represents the unoccupied
conduction or occupied valence band, respectively. Recently,
there are direct observations of Landau levels at graphite
surfaces by scanning tunneling spectroscopy (STS) [17–19]
and magnetotransmission measurements [20, 21]. Although lB
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sets the length scale of the lowest state wavefunction, higher
state ones spread farther. For graphene nanoribbons in a
perpendicular magnetic field, the electron motion is confined
by both the magnetic potential and the ribbon boundary. In
the limit of a strong magnetic field, lB ∝ B−1/2 → 0.
The electrons are confined mainly by the former. Their
properties are independent of the latter, and reproduce the
Landau levels of 2D graphene. This holds until the electron
wavefunction touches the edge. In the actual situation, lB is
not infinitesimally small. Electrons deep inside the ribbon
execute cyclotron orbits, and the orbits are interrupted by
the edge when they are near the boundary. There exists
competition between the magnetic confinement effect and
the quantum confinement effect [22]. The insertion of a
carbon nanotube will further alter the electronic properties by
the nanotube–ribbon interactions. It is of interest to study
how such interactions influence the Landau levels. In our
previous work, the electronic properties of nanotube–ribbon
hybrids made up of a single-walled carbon nanotube and
a graphene nanoribbon are investigated by using the tight-
binding method [23]. In comparison with recent local density
approximation calculation results, excluding the bandgap
opening for very narrow zigzag GNRs, the electronic structure
of GNRs can still be quantitatively described by tight-binding
calculations.

2. Theory

In this study, we consider an (m, m) armchair nanotube lying
above a zigzag graphene nanoribbon with width Nw, which
denotes the number of zigzag lines in the ribbon. There are
4m +2Nw carbon atoms in the primitive unit cell. A schematic
plot of a nanotube–ribbon hybrid system made up of a (6, 6)
nanotube and an Nw = 200 zigzag nanoribbon is depicted in
figure 1. The location of the nanotube is specified by xloc, the
ribbon zigzag line that is directly underneath the nanotube axis.
The first Brillouin zone is confined within |k| � π/

√
3b. The

nanotube and the ribbon are regarded as different subsystems.
The Hamiltonian operator can be written as

Ĥi j ={
ti, j c

+
i c j for intra-subsystem hopping,

Wti, j e
(dopt−di j )/δc+

i c j for inter-subsystem hopping,
(1)

where i = 1, 2, . . . , 4m + 2Nw. In equation (1), ti, j is the
transfer integral. Only hoppings between the nearest neighbors
are considered. The 2pz orbitals are generally not parallel
to each other, so the π bonding Vppπ (=−2.66 eV = −γ0)

and σ bonding Vppσ (=6.38 eV) need to be considered in
the inter-subsystem hoppings and the intra-nanotube hoppings.
The nanotube–ribbon interactions are assumed to decay
exponentially with interatom distance di j according to the
model by Ahn et al [24]. δ = 0.45 Å and the parameter W
is chosen to be 1/8. c+

i and c j are the creation and annihilation
operators at sites i and j , respectively. The Lennard-Jones
formula is employed to find the distance between the nanotube
bottom and the ribbon plane, dopt [25], at which the van
der Waals potential between the nanotube and the ribbon is
minimal. In the presence of a uniform magnetic field, the phase

of the electron wavefunction determined by the vector potential
will be modified. The magnetic field is along the z-axis.
With the Landau gauge, the vector potential A is (−By, 0, 0),
which will induce an extra phase factor exp(i2π�GR/φ0)

in the Hamiltonian matrix element between sites i and j .
�GR = ∫ R j

Ri
A · d�l and φ0 = 2π h̄/e is the magnetic flux

quantum. The dangling bonds on the edge sites are assumed to
be terminated by hydrogen atoms, and they will not contribute
to the electronic states near the Fermi level [11, 22]. After
diagonalizing the Hamiltonian, the state energy Ec,v(B) can
be obtained. The superscripts c and v represent the conduction
and the valence bands, respectively.

3. Results and discussion

We have computed the energy dispersions of zigzag graphene
nanoribbons Nw = 200, corresponding to an actual ribbon
width of 424.6 Å. At B = 0, there are parabolic bands
and partial flat bands at EF = 0 (not shown). Most
of the subbands are parabolic. The partial flat bands are
caused by the localized edge states [10, 22, 26]. At B =
25 T, the original parabolic bands become combinations of
the parabolic bands and the developing Landau subbands
with shifted energies (figure 1(b)). The Landau subbands
are dispersionless in the vicinity of k = 2π/3

√
3b. Not

only the dispersionless k-range but also the number of the
Landau subbands grows with Nw. It is worth mentioning
that the Landau level energies are independent of Nw when
the ribbon is sufficiently wide. In such a case, lB is much
smaller than the ribbon width, and the low-energy electrons are
confined mainly by the magnetic potential. Their properties
are independent of the ribbon boundary. The Landau level
spacings rise with growing B . The number of discrete levels
decreases but the state degeneracy at each level increases with
incrementing B . That is to say, the total number of electron
states is conserved, and the states condense into Landau levels.
Finally, the energy bands are symmetric about the Fermi
level. The addition of a nanotube alters the band structures
considerably. The original dispersionless Landau levels at
B = 25 T are changed into distorted parabolic subbands.
The nanotube–ribbon couplings modify the subband curvature,
create additional band-edge states, and change the subband
spacing, and the energy bands are no longer symmetric about
EF = 0 (figures 1(c) and (d)). Such energy band distortion
varies with xloc, and is most significant when the nanotube
is situated at the electron wavefunction localization sites. On
the other hand, higher-energy subbands are almost unaffected
by the nanotube. They closely resemble the corresponding
subbands of GNR at B = 0. This indicates that the electronic
properties of the higher-energy subbands are dominated by
the quantum confinement effect, and the magnetic field or the
addition of a nanotube has little influence on them. The (6, 6)
armchair nanotube originally has linear subbands intersecting
at the Fermi level. The nanotube–ribbon interactions mix these
linear dispersions with the GNR subbands, and change them
into distorted parabolic subbands.

The characteristics of the wavefunctions are investigated.
The envelope function �nc of GNR can be decomposed into
four subenvelope functions: �nc = �nc(A

o) + �nc(A
e) +

2
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Figure 1. (a) Schematic plot of a nanotube–ribbon hybrid made up of a (6, 6) carbon nanotube and an Nw = 200 zigzag graphene nanoribbon
with xloc = 133. (b) The low-energy subbands of Nw = 200 graphene nanoribbons at B = 25 T. The low-energy subbands of
nanotube–ribbon hybrid ((6, 6) CN and Nw = 200 GNR) at (c) xloc = 133 and (d) xloc = 167, with B = 25 T.

�nc(B
o) + �nc(B

e) [26], where Ao, Ae, Bo, and Be represent
A or B atoms at the odd or even zigzag lines of the GNR. At
B = 0, �nc=0(Ao), �nc=0(Ae), �nc=0(Bo) and �nc=0(Be) are
the localized edge states, which are strongly confined at one
of the zigzag edge. The �nc with nc � 1 are the square well
wavefunctions. When B �= 0, �nc=0(Ao) and �nc=0(Ae) are
only slightly influenced (dashed curves in figures 2(a) and (b)),
and they are still the localized edge states, while �nc=0(Bo) and
�nc=0(Be) change to Landau wavefunctions. The geometry is
left–right symmetrical, and the distinction between A and B
sites is entirely due to the gauge chosen for the vector potential.
The quantum mode is determined by the B-site Landau

wavefunction. At k = 2π/3
√

3b, �nc=0(Bo), �nc=0(Be),
�nc=1(Ao) and �nc=1(Ae) have zero node and are the Gaussian
function localized at the ribbon center. �nc=1(Bo), �nc=1(Be),
�nc=2(Ao) and �nc=2(Ae) have one node and distribute mainly
at 1/3 and 2/3 of the ribbon (figure 2), corresponding to xloc

=67 and 133, respectively. The Landau wavefunctions �nc of
GNR with nc � 1 at k = 2π/3

√
3b are linear combinations

of harmonic oscillator wavefunctions φnc−1(Ao), φnc−1(Ae),
φnc(B

o) and φnc(B
e) [26], where φnc is the product of the

Hermite polynomial Hnc and the Gaussian function. The parity
of φnc is even or odd when nc is even or odd, respectively. nc

also denotes the number of nodes.

3
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Figure 2. The envelope functions of the nanotube–ribbon hybrid at k = 2π/3
√

3b, xloc = 133 and B = 25 T on (a) A odd sites, (b) A even
sites, (c) B odd sites and (d) B even sites of the ribbon.

Figure 3. Density of states per atom of the Nw = 200 graphene
nanoribbon and nanotube–ribbon hybrid ((6, 6) CN and Nw = 200
GNR) at B = 25 T and different xloc.

With the presence of the nanotube, there are significant
changes in the low-energy (nc = 0, 1) wavefunctions, while
the high-energy (nc = 2, 3) ones only modify slightly. The

amplitudes of �nc=0(Ao) and �nc=0(Ae) decrease and those
of �nc=0(Bo) and �nc=0(Be) increase. The nanotube–ribbon
interactions change the electron distribution between A and
B atoms of the GNR, and cause electron transfer between
GNR and CN atoms. For the nc = 0 state, there is electron
migration from A to B atoms of the GNR, and there also exists
electron transfer from CN to B atoms of the GNR. The GNR
wavefunctions deviate from those of the harmonic oscillator,
and such deviation varies with xloc and nc. The nanotube–
ribbon hoppings introduce kinks in the wavefunctions at xloc.
The Landau wavefunctions of the valence bands also modified
by the nanotube (not shown), and the modifications are similar
to but not exactly the same as those of the conduction bands.
The nanotube induced energy band distortions mentioned
previously are most significant when the nanotube is placed at
the positions where the GNR wavefunctions attain their peak
values. Finally, the wavefunctions lose their spatial symmetry.
The optical absorption spectrum is determined by the velocity
matrix element 〈�c

nc
|Ê · �P/m|�v

nv
〉 [26]. The momentum

operator �P is the linear combination of the harmonic oscillator
raising and lowering operators a† and a. Considering the
orthogonal properties of φnh , the velocity matrix element of

4
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Figure 4. The dependence of the low-energy DOS peak positions on
√

B for Nw = 200 graphene nanoribbon (a) and nanotube–ribbon hybrid
with xloc = 100 (b), xloc = 133 (c), and xloc = 167 (d). In (a), solid lines are drawn to guide the eyes.

the GNR can be derived as C1δnc,nv+1 + C2δnc,nv−1 [26]. The
selection rule is nv − nc = ±1 for Landau levels in the GNR.
In the case of the nanotube–ribbon hybrid, this selection rule
no longer holds. For example, the transition channel from
nv = 1 to nc = 1 is forbidden in the GNR, but such transition
is allowed in the nanotube–ribbon hybrid.

An important parameter to characterize the band structure
is the density of states (DOS), which is defined as

D(ω) =
∑
c,v

∫
1stB Z

dk

(2π)2




(ω − Ec,v)2 + 
2
, (2)

where 
 = 2 × 10−4 γ0 is the broadening parameter. In
graphene nanoribbons, there are many 1D parabolic subbands.
Consequently, DOS will exhibit many divergent peaks in the
asymmetric square root form (the van Hove singularities). The
peak energies correspond to the band-edge state energies (Eed).
The height of the peak is proportional to the inverse square root

of the subband curvature (or the square root of the electron
effective mass). When the subbands are concave downward
and upward, the associating DOS would exhibit the divergent
peak in the 1/

√
ω − Eed and 1/

√
Eed − ω form, respectively.

There are prominent divergent peaks at EF (figure 3), resulting
from the partial flat bands. Neighboring low-energy DOS
peaks will merge as B increases. The spacings between
adjacent peaks rise with increasing B . The above-mentioned
Landau level distortions are also reflected in the DOS. The
addition of a nanotube creates many new band-edge states,
and disrupts the DOS single peaks into multiple peaks. Such
DOS peak disruption is more prominent in the low-energy
regime. Finally, the DOS peak disruption also depends on xloc.
On the other hand, the DOS peak positions can be directly
probed by the STS measurements [17–19], and they are also
closely related to the absorption peaks in magnetotransmission
experiments [20, 21]. Therefore, the evolution of the DOS peak
positions with the magnetic flux density can be determined

5
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experimentally, and deserves detailed investigations. For the
graphene nanoribbon, they first obey the relation E ∝ B at
small B . At large B , Landau levels appear, and the relation
becomes E ∝ √

B (figure 4(a)). The electron energies of 2D
graphene in a perpendicular magnetic field exhibit the Landau
levels [16], |Enh | = (h̄vF/ lB)

√
2nh = vF

√
2nhh̄eB. In the

limit of a strong magnetic field, the electronic properties of
the graphene nanoribbon are dominated by the magnetic field,
and reproduce the Landau levels of 2D graphene. Therefore,
the DOS peak positions of graphene nanoribbon vary with√

B at large B . At small B , there is no Landau level in
the graphene nanoribbon, and the energy bands are parabolic.
The corresponding DOS peak positions vary linearly with B .
The nanotube–ribbon coupling modifies the low-energy band
structure significantly and introduces new band-edge states
which correspond to additional DOS peaks in figures 4(b)–
(d). There are DOS peaks emerging near the Fermi level,
and their positions decay with increasing B (figures 4(b)–
(d)). Moreover, as the nanotube is placed at the ribbon center
(xloc = 100), DOS peak position curves drop initially and then
rebound with rising B (figures 4(b)). These newly generated
DOS peak behaviors deviate from the mentioned simple linear
B to square root B dependence.

4. Concluding remarks

In conclusion, the effects of a nanotube on the graphene
nanoribbon Landau levels are studied theoretically by the tight-
binding model. For a graphene nanoribbon in a perpendicular
magnetic field, there will be Landau levels when B is
large. The addition of a nanotube changes the original
dispersionless Landau subbands into distorted parabolic ones,
creates additional band-edge states, and modifies the subband
spacing. In addition, the dispersion relations are found to
rely sensitively on the nanotube location. The nanotube–
ribbon couplings disrupt the Landau wavefunctions and lift
their spatial symmetry, which will change the selection rule
of optical transitions. The nanotube–ribbon interactions cause
electron transfer between A and B atoms of the GNR, and
between the GNR and CN subsystems. The variations of
the band structures will be directly reflected in the DOS.
The numbers and frequencies of the DOS peaks are strongly
dependent on the magnetic flux density and the nanotube
location. The evolution of the DOS peak with the magnetic
flux density is explored. The Landau levels are shown to be
modified in an unexpected fashion by the nanotube–ribbon
interactions. These predictions can be validated by measuring
the spectra of STS or magneto-optical experiments, and they
are most observable by placing the nanotube at the electron
wavefunction localization sites.
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